skip to main content


Search for: All records

Creators/Authors contains: "Junium, Christopher K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We apply a new approach for the δ13C analysis of single organic‐walled microfossils (OWM) to three sites in the Appalachian Basin of New York (AB) that span the Late Devonian Biotic Crisis (LDBC). Our data provide new insights into the nature of the Frasnian–Famennian carbon cycle in the AB and also provide possible constraints on the paleoecology of enigmatic OWM ubiquitous in Paleozoic shale successions. The carbon isotope compositions of OWM are consistent with normal marine organic matter of autochthonous origins and range from −32 to −17‰, but average −25‰ across all samples and are consistently13C‐enriched compared to bulk sediments (δ13Cbulk) by ~0–10‰. We observe no difference between the δ13COWMof leiospheres (smooth‐walled) and acanthomorphic (spinose) acritarch OWM, indicating that our data are driven by ecological rather than taxonomic signals. We hypothesize that the offset between δ13COWMand δ13Cbulkis in part due to a large δ13C gradient in the AB water column where OWM utilized relatively13C‐enriched dissolved inorganic carbon near the surface. Thus, the organisms producing the balance of the total organic carbon were assimilating13C‐depleted C sources, including but not limited to respired organic carbon or byproducts of fermentation. We also observe a systematic decrease in both δ13COWMand δ13Cbulkof 3‰ from shoreward to open‐ocean facies that may reflect the effect of13C‐enriched dissolved inorganic carbon (DIC) derived from riverine sources in the relatively enclosed AB. The hypothesized steep carbon isotope gradient in the AB could be due to a strong biological pump; this in turn may have contributed to low oxygen bottom water conditions during the LDBC. This is the first time single‐microfossil δ13Corganalyses of eukaryotes have been directly compared to bulk δ13Corgin the deep‐time fossil record.

     
    more » « less
  2. Abstract

    The degree to which ocean deoxygenation will alter the function of marine communities remains unclear but may be best constrained by detailed study of intervals of rapid warming in the geologic past. The Paleocene–Eocene Thermal Maximum (PETM) was an interval of rapid warming that was the result of increasing contents of greenhouse gases in the atmosphere that had wide ranging effects on ecosystems globally. Here, we present stable nitrogen isotope data from the Eastern Peri-Tethys Ocean that record a significant transition in the nitrogen cycle. At the initiation of the PETM, the nitrogen isotopic composition of sediments decreased by ~6‰ to as low as −3.4‰, signaling reorganization of the marine nitrogen cycle. Warming, changes in ocean circulation, and deoxygenation caused a transition to nitrogen cycle to conditions that were most similar to those experienced during Oceanic Anoxic Events of the Mesozoic.

     
    more » « less
  3. Abstract

    Tufa domes and towers are common around the margins of Winnemucca Dry Lake, Nevada,USA, a desiccated sub‐basin of pluvial Lake Lahontan. A 2·5 m diameter concentrically‐layered tufa mound from the southern end of the playa was sampled along its growth axis to determine timing, rate and geochemical conditions of tufa growth. A radiocarbon‐based age model indicates an 8200‐year tufa depositional record that begins near the end of the Last Glacial Maximum (ca23 400 cal yr bp) and concludes at the end of the most recent Lahontan highstand (ca15 200 cal yr bp). Petrography, stable isotopes and major and minor elemental compositions are used to evaluate the rate and timing of tufa growth in the context of the depositional environment. The deposit built radially outward from a central nucleation point, with six decimetre‐scale layers defined by variations in texture. Two distinct tufa types are observed: the inner section is composed of two layers of thinolite pseudomorphs after ikaite, with the innermost layer comprised of very small pseudomorphs (<0·25 cm) and an outer layer composed of larger,ca3 cm long pseudomorphs, followed by a transitional layer where thinolite pseudomorphs grade into calcite fans. The outer section consists of three distinct layers of thrombolitic micrite with a branching mesofabric. The textural change occurred as lake levels began to rise towards the most recent Lahontan highstand interval and probably was prompted by warming of lake waters caused by increased groundwater flux during highstand lake levels. The Mg/Ca and Sr/Ca variations suggest a warming trend in the tufa growth environment and may also reflect increasing growth rates of tufa associated with increased fluxes of groundwater. This systematic study of tufa deposition indicates the importance of the hydrology of the lacustrine tufa system for reconstructing palaeoenvironmental records, and particularly the interaction of ground and surface waters.

     
    more » « less
  4. Abstract

    Carbonate microbialites in lakes can serve as valuable indicators of past environments, so long as the biogenicity and depositional setting of the microbialite can be accurately determined. Late Pleistocene to Early Holocene frondose draping tufa deposits from Winnemucca Dry Lake (Nevada, USA), a subbasin of pluvial Lake Lahontan, were examined in outcrop, petrographically, and geochemically to determine whether microbially induced precipitation is a dominant control on deposition. These observations were compared to modern, actively accumulating microbialites from Fayetteville Green Lake (New York, USA) using similar methods. In addition, preserved microbial DNA was extracted from the Lahontan tufa and sequenced to provide a more complete picture of the microbial communities. Tufas are texturally and geochemically similar to modern thrombolitic microbialites from Fayetteville Green Lake, and the stable isotopic composition of organic C, N, inorganic C, and O supports deposition associated with a lacustrine microbial mat environment dominated by photosynthetic processes. DNA extraction and sequencing indicate that photosynthetic microbial builders were present during tufa deposition, primarilyChloroflexiandProteobacteriawith minor abundances ofCyanobacteriaandAcidobacteria. Based on the sequencing results, the depositional environment of the tufas can be constrained to the photic zone of the lake, contrasting with some previous interpretations that put tufa formation in deeper waters. Additionally, the presence of a number of mesothermophilic phyla, includingDeinococcus–Thermus, indicates that thermal groundwater may have played a role in tufa deposition at sites not previously associated with groundwater influx. The interpretation of frondose tufas as microbially influenced deposits provides new context to interpretations of lake level and past environments in the Lahontan lake basins.

     
    more » « less